Predicting Neurofeedback Performance

Fabian Renz¹, David Steyrl¹, Amelie Haugg^{1,2}, Cindy Lor¹, Sebastian J. Götzendorfer¹, Andrew Nicholson¹, Lydia Hellrung², Marina Papoutsi³, Michael Marxen⁴, Jeff MacInnes⁵, Alison Adcock⁶, Kathryn Dickerson⁶, Nan-Kuei Chen⁷, Kymberly Young⁸, Jerzy Bodurka⁹, Yao Shuxia¹⁰, Benjamin Becker¹⁰, Tibor Auer¹¹, Renate Schweizer¹², Kirsten Emmert¹³, Sven Haller¹⁴, Dimitri Van De Ville¹⁵, Dong-Youl Kim¹⁶, Jong-Hwan Lee¹⁶, Theo Marins¹⁷, Nikolaus Weiskopf¹⁸, Frank Scharnowski^{1, 2}

¹University of Vienna ²University of Zurich ³University College London ⁴Technische Universität Dresden ⁵University of Washington ⁶Duke University ⁷University of Arizona ⁸University of Pittsburgh ⁹Laureate Institute for Brain Research, Tulsa ¹⁰University of Electronic Science and Technology of China ¹¹University of Surrey ¹²Functional Imaging Laboratory, German Primate Center ¹³Kiel University ¹⁴Uppsala University ¹⁵Ecole Polytechnique Féderale de Lausanne ¹⁶Korea University ¹⁷D'Or Institute for Research and Education, Rio de Janeiro ¹⁸Max Planck Institute for Human Cognitive and Brain Sciences

Introduction 1

Self-regulation performance in real-time fMRI-based neurofeedback shows large inter-individual and inter-study variation. Clear learning curves are seen rarely. Using machine learning, we investigate whether neurofeedback regulation performance is largely random or follows predictable patterns across runs.

Methods 2

We used a machine-learning approach (LASSO regression, cross-validated) to predict regulation performance of a run based on performance in previous regulation runs. For each regulation run as target, we report the coefficients of determination of the obtained LASSO Models.

The dataset consists of 12 studies including a total of 182 participants and 10 different ROIs. Neurofeedback regulation performance was measured in percent signal change.

Results and Discussion – continued 3

Conclusion 4

Participants in real-time neurofeedback training studies are able to self-regulate brain activity. Also, regulation performance is, at least to some extent, predictable from previous run performance. This indicates that neurofeedback training induces systematic changes. The next steps will be to (1) extend our dataset, (2) optimize the current analyses with non-linear models, and (3) add information from other features that have been shown to influence neurofeedback performance (see our Poster # 60: Factors influencing neurofeedback performance and learning success: A Machine Learning Mega-Analysis).

Results and Discussion 3

Overall, participants successfully performed percent signal change regulation (positive % signal change during regulation compared to baseline, Fig. 2-5). However, the machine-learning prediction results are mixed. The obtained median R² values are above 0 for each run (median $R^2 = 0.12 - 0.22$), but a few poorly performing models reduce the average R². Furthermore, there is no clear pattern of which past runs are most important for the prediction (Fig. 7).

Contact: Fabian Renz fabian.renz@univie.ac.at | David Steyrl david.steyrl@univie.ac.at If you want to join our meta-analytic projects (e.g. contribution of data), please contact Amelie Haugg amelie.haugg@bli.uzh.ch