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Check out poster 119 for more mega-analysis results!

Results: factors influencing NFB performance
Models aiming to predict NFB performance explained variance of R² = 0.31 for the LASSO model,
R² = 0.26 for the RT model, and R² = 0.31 for the XGB model. Feature importances varied between
linear and non-linear models (see figures below).
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Methods
In a sample of 29 NFB studies with 599 participants, we investigated the influence
of 31 different features related to experimental design, imaging parameters,
demographics, etc. on NFB learning success and NFB regulation performance (this
latter analysis included only studies that reported % signal change).
Predictions were based on 3 different machine-learning methods:
- an ordinary least squares model with lasso regularization (LASSO)
- a random forests model (RT)
- an extreme gradient boosted trees model (XGB)
We used cross-validation (10 times 10-folds) to avoid overfitting and to assess
generalizability.
Feature importances were first calculated for each model type and, then, weighted
by the corresponding model's R² values and averaged over all 3 model types.

—229 participants
—14 studies
—more than 10
regions of interest

—599 participants
—29 studies
—more than 20
regions of interest
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These analyses were only possible due to contributions from many
researchers. You have conducted a rtfMRI study? We are happy
about any further data contributions, so we can increase
generalizability and investigate even more features!
Please contact us: amelie.haugg@uzh.ch

Looking for contributions!

Results: factors influencing NFB learning success
Overall model performance was very weak, where, on average,
no variance was described by the models (LASSO: average R² = -
0.04, RT: average R² = -0.02, XGB: average R² = -0.02).
Therefore, feature importances for features influencing NFB
learning success were not further investigated for the three
models.

Inter-individual differences in neurofeedback (NFB) performance and learning
success are large, and some individuals do not benefit from NFB training. The main
factors that cause this large variability in NFB performance and learning success are
unknown.
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Interestingly, our models were not able to explain any variance
when we targeting NFB learning success (see poster #119 for a
mega-analysis of NFB learning and overall NFB learnign
curves). In contrast, the models explained approximately one
third of the variance for the NFB performance target. These
analyses can help to design more efficient NFB studies.

To further improve the model predictions and better identify key
performance and learning parameters in NFB experiments we
will
(1) improve the target measures (especially the definition of
learning)
(2) include additional features that might influence NFB learning
success and performance
(3) include more data
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